Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.786
1.
Sci Adv ; 10(19): eadk7283, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728392

Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.


Carbonic Anhydrases , Cyanobacteria , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/chemistry , Cyanobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/enzymology , Allosteric Regulation , Phylogeny , Ribulosephosphates/metabolism , Models, Molecular , Protein Multimerization , Carbon Dioxide/metabolism , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
2.
Microb Ecol ; 87(1): 69, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730059

Biocrust inoculation and microbially induced carbonate precipitation (MICP) are tools used in restoring degraded arid lands. It remains unclear whether the ecological functions of the two tools persist when these methods are combined and subjected to freeze-thaw (FT) cycles. We hypothesized a synergetic interaction between MICP treatment and biocrust under FT cycles, which would allow both components to retain their ecological functions. We grew cyanobacterial (Nostoc commune) biocrusts on bare soil and on MICP (Sporosarcina pasteurii)-treated soil, subjecting them to repeated FT cycles simulating the Mongolian climate. Generalized linear modeling revealed that FT cycling did not affect physical structure or related functions but could increase the productivity and reduce the nutrient condition of the crust. The results confirm the high tolerance of MICP-treated soil and biocrust to FT cycling. MICP treatment + biocrust maintained higher total carbohydrate content under FT stress. Our study indicates that biocrust on biomineralized soil has a robust enough structure to endure FT cycling during spring and autumn and to promote restoration of degraded lands.


Cyanobacteria , Freezing , Soil Microbiology , Soil , Soil/chemistry , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Carbonates/chemistry , Carbonates/metabolism , Ecosystem , Sporosarcina/metabolism , Sporosarcina/growth & development
4.
Harmful Algae ; 134: 102627, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705620

Due to climate changes and eutrophication, blooms of predominantly toxic freshwater cyanobacteria are intensifying and are likely to colonize estuaries, thus impacting benthic organisms and shellfish farming representing a major ecological, health and economic risk. In the natural environment, Microcystis form large mucilaginous colonies that influence the development of both cyanobacterial and embedded bacterial communities. However, little is known about the fate of natural colonies of Microcystis by salinity increase. In this study, we monitored the fate of a Microcystis dominated bloom and its microbiome along a French freshwater-marine gradient at different phases of a bloom. We demonstrated changes in the cyanobacterial genotypic composition, in the production of specific metabolites (toxins and compatible solutes) and in the heterotrophic bacteria structure in response to the salinity increase. In particular M. aeruginosa and M. wesenbergii survived salinities up to 20. Based on microcystin gene abundance, the cyanobacteria became more toxic during their estuarine transfer but with no selection of specific microcystin variants. An increase in compatible solutes occurred along the continuum with extensive trehalose and betaine accumulations. Salinity structured most the heterotrophic bacteria community, with an increased in the richness and diversity along the continuum. A core microbiome in the mucilage-associated attached fraction was highly abundant suggesting a strong interaction between Microcystis and its microbiome and a likely protecting role of the mucilage against an osmotic shock. These results underline the need to better determine the interactions between the Microcystis colonies and their microbiome as a likely key to their widespread success and adaptation to various environmental conditions.


Fresh Water , Microbiota , Fresh Water/microbiology , Microcystis/physiology , Cyanobacteria/physiology , Cyanobacteria/metabolism , Cyanobacteria/genetics , Salinity , Microcystins/metabolism , Harmful Algal Bloom , Seawater/microbiology , Seawater/chemistry , France
5.
Nat Commun ; 15(1): 3712, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697963

The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA, an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints.


Bacterial Proteins , Circadian Clocks , Cyanothece , Nitrogen Fixation , Oxygen , Oxygen/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Circadian Clocks/genetics , Circadian Clocks/physiology , Cyanothece/metabolism , Cyanothece/genetics , Nitrogenase/metabolism , Nitrogenase/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm Signaling Peptides and Proteins/genetics , Gene Expression Regulation, Bacterial , Cyanobacteria/metabolism , Cyanobacteria/genetics
6.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739791

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Gene Expression Regulation, Bacterial , Photosynthesis , Photosynthesis/genetics , Circadian Clocks/genetics , Biotechnology/methods , Cyanobacteria/genetics , Cyanobacteria/metabolism , Promoter Regions, Genetic , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
7.
Bioresour Technol ; 401: 130736, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670289

Oxygenic photogranules (OPGs) have great potential for the aeration-free treatment of various wastewater, however, the effects of wastewater carbon composition on OPGs remain unknown. This study investigated the hydrodynamic photogranulation in three types of wastewater with the same total carbon concentration but different inorganic/organic carbon compositions, each operated at two replicated reactors. Results showed that photogranulation failed in reactors fed with only inorganic carbon. In reactors with equal inorganic and organic carbon, loose-structured OPGs formed but then disintegrated. Comparatively, reactors treating organic carbon-based wastewater obtained regular and dense OPGs with better settleability, lower effluent turbidity, excellent structural stability, and higher carbon assimilation rate. Sufficient amounts of organic carbon were crucial for the formation and stability of OPGs as they promoted the secretion of extracellular polymeric substances (EPS) and the growth of filamentous cyanobacteria. This study provides a basis for the startup of OPGs process and facilitates its large-scale application.


Carbon , Hydrodynamics , Organic Chemicals , Oxygen , Wastewater , Carbon/chemistry , Wastewater/chemistry , Bioreactors , Water Purification/methods , Cyanobacteria/metabolism
8.
Genome Biol Evol ; 16(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38670115

Gene duplication contributes to the evolution of expression and the origin of new genes, but the relative importance of different patterns of duplicate gene expression and mechanisms of retention remains debated and particularly poorly understood in bacteria. Here, we investigated gene expression patterns for two lab strains of the cyanobacterium Acaryochloris marina with expanding genomes that contain about 10-fold more gene duplicates compared with most bacteria. Strikingly, we observed a generally stoichiometric pattern of greater combined duplicate transcript dosage with increased gene copy number, in contrast to the prevalence of expression reduction reported for many eukaryotes. We conclude that increased transcript dosage is likely an important mechanism of initial duplicate retention in these bacteria and may persist over long periods of evolutionary time. However, we also observed that paralog expression can diverge rapidly, including possible functional partitioning, for which different copies were respectively more highly expressed in at least one condition. Divergence may be promoted by the physical separation of most Acaryochloris duplicates on different genetic elements. In addition, expression pattern for ancestrally shared duplicates could differ between strains, emphasizing that duplicate expression fate need not be deterministic. We further observed evidence for context-dependent transcript dosage, where the aggregate expression of duplicates was either greater or lower than their single-copy homolog depending on physiological state. Finally, we illustrate how these different expression patterns of duplicated genes impact Acaryochloris biology for the innovation of a novel light-harvesting apparatus and for the regulation of recA paralogs in response to environmental change.


Cyanobacteria , Evolution, Molecular , Gene Duplication , Genome, Bacterial , Cyanobacteria/genetics , Cyanobacteria/metabolism , Gene Dosage , Gene Expression Regulation, Bacterial , Genes, Duplicate
9.
Sci Adv ; 10(14): eadk7535, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578996

Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.


Cyanobacteria , Phycobilisomes , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Bacterial Proteins/metabolism , Canthaxanthin/metabolism , Cryoelectron Microscopy , Cyanobacteria/metabolism
10.
Toxins (Basel) ; 16(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38668594

Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), ß-aminomethyl-L-alanine (BAMA), ß-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms.


Cyanobacteria , Lakes , Lakes/microbiology , Cyanobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Manitoba , Harmful Algal Bloom , Amino Acids/analysis , Amino Acids/metabolism , Tandem Mass Spectrometry , Biodiversity , Microbiota , Cyanobacteria Toxins
11.
Physiol Plant ; 176(3): e14316, 2024.
Article En | MEDLINE | ID: mdl-38686633

The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.


Cyanobacteria , Metabolic Engineering , Photosynthesis , Metabolic Engineering/methods , Cyanobacteria/metabolism , Cyanobacteria/genetics , Photosynthesis/genetics , Carbon Dioxide/metabolism
12.
Microb Ecol ; 87(1): 61, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38662080

Emissions from transportation and industry primarily cause global warming, leading to floods, glacier melt, and rising seas. Widespread greenhouse gas emissions and resulting global warming pose significant risks to the environment, economy, and society. The need for alternative fuels drives the development of third-generation feedstocks: microalgae, seaweed, and cyanobacteria. These microalgae offer traits like rapid growth, high lipid content, non-competition with human food, and growth on non-arable land using brackish or waste water, making them promising for biofuel. These unique phototrophic organisms use sunlight, water, and carbon dioxide (CO2) to produce biofuels, biochemicals, and more. This review delves into the realm of microalgal biofuels, exploring contemporary methodologies employed for lipid extraction, significant value-added products, and the challenges inherent in their commercial-scale production. While the cost of microalgae bioproducts remains high, utilizing wastewater nutrients for cultivation could substantially cut production costs. Furthermore, this review summarizes the significance of biocircular economy approaches, which encompass the utilization of microalgal biomass as a feed supplement and biofertilizer, and biosorption of heavy metals and dyes. Besides, the discussion extends to the in-depth analysis and future prospects on the commercial potential of biofuel within the context of sustainable development. An economically efficient microalgae biorefinery should prioritize affordable nutrient inputs, efficient harvesting techniques, and the generation of valuable by-products.


Biofuels , Biomass , Microalgae , Microalgae/metabolism , Microalgae/growth & development , Cyanobacteria/metabolism , Seaweed/metabolism , Carbon Dioxide/metabolism
13.
Sci Total Environ ; 927: 172313, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593871

The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.


Bioreactors , Cyanobacteria , Phosphorus , Waste Disposal, Fluid , Phosphorus/metabolism , Cyanobacteria/metabolism , Cyanobacteria/physiology , Bioreactors/microbiology , Anaerobiosis , Waste Disposal, Fluid/methods , Biofilms , Aerobiosis
14.
Science ; 384(6692): 217-222, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38603509

Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."


Cyanobacteria , Haptophyta , Mitochondria , Nitrogen Fixation , Nitrogen , Cyanobacteria/genetics , Cyanobacteria/metabolism , Haptophyta/microbiology , Nitrogen/metabolism , Nitrogen Fixation/genetics , Seawater/microbiology , Symbiosis , Mitochondria/metabolism , Chloroplasts/metabolism
15.
Sci Rep ; 14(1): 9731, 2024 04 28.
Article En | MEDLINE | ID: mdl-38679613

Cyanobacteria inhabiting extreme environments constitute a promising source for natural products with biotechnological applications. However, they have not been studied in-depth for this purpose due to the difficulties in their isolation and mass culturing. The Atacama Desert suffers one of the highest solar irradiances that limits the presence of life on its hyperarid core to endolithic microbial communities supported by cyanobacteria as primary producers. Some of these cyanobacteria are known to produce scytonemin, a UV-screening liposoluble pigment with varied biotechnological applications in cosmetics and other industries. In this work we carried out a strain selection based on growth performance among 8 endolithic cyanobacteria of the genera Chroococcidiopsis, Gloeocapsa and Gloeocapsopsis isolated from non-saline rocks of the Atacama Desert. Then we investigated the influence of NaCl exposure on scytonemin production yield. Results in the selected strain (Chroococcidiopsis sp. UAM571) showed that rising concentrations of NaCl lead to a growth decrease while triggering a remarkable increase in the scytonemin content, reaching maximum values at 20 g L-1 of NaCl over 50-fold higher scytonemin contents than those obtained without NaCl. Altogether, these findings point out to cyanobacteria from the Atacama Desert as potentially suitable candidates for pilot-scale cultivation with biotechnological purposes, particularly to obtain scytonemin.


Cyanobacteria , Desert Climate , Indoles , Salinity , Cyanobacteria/metabolism , Cyanobacteria/growth & development , Indoles/metabolism , Phenols/metabolism
16.
Water Res ; 256: 121492, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593604

Cyanobacterial blooms, producing toxic secondary metabolites, are becoming increasingly common phenomena in the face of rising global temperatures. They are the world's most abundant photosynthetic organisms, largely owing their success to a range of highly diverse and complex natural products possessing a broad spectrum of different bioactivities. Over 2600 compounds have been isolated from cyanobacteria thus far, and their characterisation has revealed unusual and useful chemistries and motifs including alkynes, halogens, and non-canonical amino acids. Genome sequencing of cyanobacteria lags behind natural product isolation, with only 19% of cyanobacterial natural products associated with a sequenced organism. Recent advances in meta(genomics) provide promise to narrow this gap and has also facilitated the uprise of combined genomic and metabolomic approaches, heralding a new era of discovery of novel compounds. Analyses of the datasets described within this manuscript reveal the asynchrony of current genomic and metabolomic data, highlight the chemical diversity of cyanobacterial natural products. Linked to this manuscript, we make these manually curated datasets freely accessible for the public to facilitate further research in this important area.


Cyanobacteria , Genomics , Metabolomics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Biological Products , Genome, Bacterial
17.
Toxins (Basel) ; 16(4)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38668615

Cyanobacteria are harmful algae that are monitored worldwide to prevent the effects of the toxins that they can produce. Most research efforts have focused on direct or indirect effects on human populations, with a view to gain easy accurate detection and quantification methods, mainly in planktic communities, but with increasing interest shown in benthos. However, cyanobacteria have played a fundamental role from the very beginning in both the development of our planet's biodiversity and the construction of new habitats. These organisms have colonized almost every possible planktic or benthic environment on earth, including the most extreme ones, and display a vast number of adaptations. All this explains why they are the most important or the only phototrophs in some habitats. The negative effects of cyanotoxins on macroinvertebrates have been demonstrated, but usually under conditions that are far from natural, and on forms of exposure, toxin concentration, or composition. The cohabitation of cyanobacteria with most invertebrate groups is long-standing and has probably contributed to the development of detoxification means, which would explain the survival of some species inside cyanobacteria colonies. This review focuses on benthic cyanobacteria, their capacity to produce several types of toxins, and their relationships with benthic macroinvertebrates beyond toxicity.


Cyanobacteria , Fresh Water , Invertebrates , Cyanobacteria/metabolism , Animals , Fresh Water/microbiology , Ecosystem , Bacterial Toxins/toxicity , Biodiversity
18.
Toxins (Basel) ; 16(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38668621

Microcystins (MCs), natural hepatotoxic compounds produced by cyanobacteria, pose significant risks to water quality, ecosystem stability, and the well-being of animals, plants, and humans when present in elevated concentrations. The escalating contamination of irrigation water with MCs presents a growing threat to terrestrial plants. The customary practice of irrigating crops from local water sources, including lakes and ponds hosting cyanobacterial blooms, serves as a primary conduit for transferring these toxins. Due to their high chemical stability and low molecular weight, MCs have the potential to accumulate in various parts of plants, thereby increasing health hazards for consumers of agricultural products, which serve as the foundation of the Earth's food chain. MCs can bioaccumulate, migrate, potentially biodegrade, and pose health hazards to humans within terrestrial food systems. This study highlights that MCs from irrigation water reservoirs can bioaccumulate and come into contact with plants, transferring into the food chain. Additionally, it investigates the natural mechanisms that organisms employ for conjugation and the microbial processes involved in MC degradation. To gain a comprehensive understanding of the role of MCs in the terrestrial food chain and to elucidate the specific health risks associated with consuming crops irrigated with water contaminated with these toxins, further research is necessary.


Agricultural Irrigation , Microcystins , Water Pollutants, Chemical , Microcystins/analysis , Microcystins/toxicity , Humans , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Risk Assessment , Animals , Water Microbiology , Cyanobacteria/metabolism , Food Chain , Food Contamination/analysis
19.
Sci Total Environ ; 929: 172609, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38663623

Nitrogen-fixing cyanobacteria (NFC) are photosynthetic prokaryotic microorganisms capable of nitrogen fixation. They can be used as biofertilizers in paddy fields, thereby improving the rice tillering capacity and yield. To reveal the microbiological mechanisms by which nitrogen-fixing cyanobacteria alter soil carbon storage, we conducted a field experiment using NFC as a partial substitute for nitrogen fertilizer in paddy fields in the Sanjiang Plain of Northeast China's Mollisols region. Using metagenomic sequencing technology and Biolog Ecoplate™ carbon matrix metabolism measurements, we explored the changes in the soil microbial community structure and carbon utilization in paddy fields. The results indicated that the replacement of nitrogen fertilizer with NFC predisposed the soil microbial community to host a great number of copiotrophic bacterial taxa, and Proteobacteria and Actinobacteria were closely associated with the metabolism of soil carbon sources. Moreover, through co-occurrence network analysis, we found that copiotrophic bacteria clustered in modules that were positively correlated with the metabolic level of carbon sources. The addition of NFC promoted the growth of copiotrophic bacteria, which increased the carbon utilization level of soil microorganisms, improved the diversity of the microbial communities, and had a potential impact on the soil carbon stock. The findings of this study are helpful for assessing the impact of NFC on the ecological function of soil microbial communities in paddy fields in the black soil area of Northeast China, which is highly important for promoting sustainable agricultural development and providing scientific reference for promoting the use of algal-derived nitrogen fertilizers.


Carbon , Cyanobacteria , Microbiota , Oryza , Soil Microbiology , Soil , Carbon/metabolism , Cyanobacteria/metabolism , China , Soil/chemistry , Fertilizers , Nitrogen Fixation , Nitrogen/metabolism , Agriculture/methods
20.
J Proteome Res ; 23(5): 1689-1701, 2024 May 03.
Article En | MEDLINE | ID: mdl-38565891

Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.


Lysine , Protein Processing, Post-Translational , Synechococcus , Lysine/metabolism , Synechococcus/metabolism , Synechococcus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hydrogen Peroxide/metabolism , Glutaredoxins/metabolism , Glutaredoxins/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Mutagenesis, Site-Directed , Photosynthesis , Cyanobacteria/metabolism , Cyanobacteria/genetics , Mass Spectrometry
...